# Maxwell's Equations equation | description ----------|------------ $\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero $\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$ $\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | _wha?_ $$ x^3 + y^3 = z^3 $$ $$ \frac{\bcancel{\frac13}}{\bcancel{\frac13}} = 1 $$ $$ \begin{aligned} (a+b)^2 &= (a+b)(a+b) \\ &= a^2 + ab + ba + b^2 \\ &= a^2 + 2ab + b^2 \end{aligned} $$ $$ \cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}} $$ $$ P\implies Q $$ $$ a + \lt b\gt + c $$ $$ \sum\nolimits_{k=1}^n a_k $$ $$ \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh $$ $$ \sum_{ \substack{ 1\lt i\lt 3 \\ 1\le j\lt 5 }} a_{ij} $$ $$ \underbrace{x + \cdots + x}_{n\rm\ times} $$ $$ \left(\vcenter{\frac{a+b}{\dfrac{c}{d}}}\right) $$ $$ x+\xcancel{5y}=0 $$ $$ \def\arraystretch{1.5} \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array} $$
Mathdown!